https://www.selleckchem.com/products/sr18662.html
Early identification of older people at risk of falling is the cornerstone of fall prevention. Many fall prediction tools exist but their external validity is lacking. External validation is a prerequisite before application in clinical practice. Models developed with electronic health record (EHR) data are especially challenging because of the uncontrolled nature of routinely collected data. We aimed to externally validate our previously developed and published prediction model for falls, using a large cohort of community-dwelling olde