https://www.selleckchem.com/pr....oducts/CP-690550.htm
An extensive 1432 IC representation images data set was generated and manually labelled via an expert as brain components or one of the six distinct removable artifacts. The supervised CNN architecture was utilized to categorize good brain ICs and bad artifactual ICs via generated images of topographical maps. Our model categorizing good versus bad IC topographical maps resulted in a binary classification accuracy and area under curve of 89.20% and 0.93 respectively. Despite significant imbalance, only 1 out of the 57 present brain IC