https://www.selleckchem.com/products/fht-1015.html
This study was conducted to develop a convolutional neural network (CNN)-based model to predict the sex and age of patients by identifying unique unknown features from paranasal sinus (PNS) X-ray images.We employed a retrospective study design and used anonymized patient imaging data. Two CNN models, adopting ResNet-152 and DenseNet-169 architectures, were trained to predict sex and age groups (20-39, 40-59, 60+ years). The area under the curve (AUC), algorithm accuracy, sensitivity, and specificity were assessed. Class-activation map