https://www.selleckchem.com/products/lmk-235.html
Correcting the systematic bias and quantifying uncertainty associated with the operational water quality forecasts are imperative works for risk-based environmental decision making. This work proposes a post-processing method for addressing both bias correction and total uncertainty quantification for daily forecasts of water quality parameters derived from dynamical lake models. The post-processing is implemented based on a Bayesian Joint Probability (BJP) modeling approach. The BJP model uses a log-sinh transformation to normalize the