https://www.selleckchem.com/products/iwp-2.html
Frailty indices (FIs) based on continuous valued health data, such as obtained from blood and urine tests, have been shown to be predictive of adverse health outcomes. However, creating FIs from such biomarker data requires a binarization treatment that is difficult to standardize across studies. In this work, we explore a "quantile" methodology for the generic treatment of biomarker data that allows us to construct an FI without preexisting medical knowledge (i.e. risk thresholds) of the included biomarkers. We show that our quantile app