https://www.selleckchem.com/products/Nolvadex.html
In the field of transmission electron microscopy, data interpretation often lags behind acquisition methods, as image processing methods often have to be manually tailored to individual datasets. Machine learning offers a promising approach for fast, accurate analysis of electron microscopy data. Here, we demonstrate a flexible two-step pipeline for the analysis of high-resolution transmission electron microscopy data, which uses a U-Net for segmentation followed by a random forest for the detection of stacking faults. Our trained U-Ne