https://www.selleckchem.com/mTOR.html
Ultimately, it was demonstrated that the unintentional In incorporation in GaN barriers was induced by the evaporation of predeposited In-rich particles during low-temperature growth of GaInN wells. Such residual In contamination was sufficiently inhibited by inserting low Al fraction (∼6%) AlGaN spacers after each GaInN well. During the growth of AlGaN spacers, AlN polycrystalline particles were deposited on the surrounding dummy substrate, which suppressed the evaporation of the predeposited In-rich particles. Thus, the presence of AlGaN spacers