https://www.selleckchem.com/products/jib-04.html
Wind turbine technology is pursuing the maturation using advanced multi-megawatt machinery equipped by powerful monitoring systems. In this work, a multichannel convolutional neural network is employed to develop an autonomous databased fault diagnosis algorithm. This algorithm has been evaluated in a 5MW wind turbine benchmark model. Several faults for various wind speeds are simulated in the benchmark model, and output data are recorded. A multichannel convolutional neural network with multiple parallel local heads is utilized in order