https://www.selleckchem.com/products/azd1390.html
At present, the state-of-the-art approaches of Visual Question Answering (VQA) mainly use the co-attention model to relate each visual object with text objects, which can achieve the coarse interactions between multimodalities. However, they ignore the dense self-attention within question modality. In order to solve this problem and improve the accuracy of VQA tasks, in the present paper, an effective Dense Co-Attention Networks (DCAN) is proposed. First, to better capture the relationship between words that are relatively far apart and