https://www.selleckchem.com/JAK.html
Fluorophores with emission in the second near-infrared window (NIR-II) have displayed salient advantages for biomedical applications. However, the common strategy of reducing the energy bandgap of fluorophores so as to achieve red-shifted wavelengths always leads to compromised fluorescent brightness. Herein, we propose a molecular design concept of "ring-fusion" to modify the acceptor of AIEgen that can extend the luminous wavelength from NIR-I to NIR-II. The fused-acceptor-containing fluorophore yielded, TTQP, has an enhanced absorption coefficien