https://www.selleckchem.com/products/skf96365.html
In this article, we propose an alternating directional 3-D quasi-recurrent neural network for hyperspectral image (HSI) denoising, which can effectively embed the domain knowledge--structural spatiospectral correlation and global correlation along spectrum (GCS). Specifically, 3-D convolution is utilized to extract structural spatiospectral correlation in an HSI, while a quasi-recurrent pooling function is employed to capture the GCS. Moreover, the alternating directional structure is introduced to eliminate the causal dependence with