https://www.selleckchem.com/products/cc-930.html
Effective fusion of multimodal magnetic resonance imaging (MRI) is of great significance to boost the accuracy of glioma grading thanks to the complementary information provided by different imaging modalities. However, how to extract the common and distinctive information from MRI to achieve complementarity is still an open problem in information fusion research. In this study, we propose a deep neural network model termed as multimodal disentangled variational autoencoder (MMD-VAE) for glioma grading based on radiomics features extract