https://www.selleckchem.com/products/iso-1.html
Then we allocate the weight to each loss for each patch-label pair during weakly-supervised training to enable discriminative disease part learning. We finally extract patch features from the network trained with loss reweighting, and utilize the LSTM network to encode the weighed patch feature sequence into a comprehensive feature representation. Extensive evaluations on this dataset and another public dataset demonstrate the advantage of the proposed method. We expect this research will further the agenda of plant disease recognition in