https://www.selleckchem.com/products/dx3-213b.html
Wearable systems constitute a promising solution to the emerging challenges of healthcare provision, feeding machine learning frameworks with necessary data. In practice, however, raw data collection is expensive in terms of energy, and therefore imposes a significant maintenance burden to the user, which in turn results in poor user experience, as well as significant data loss due to improper battery maintenance. In this paper, we propose a framework for on-board activity classification targeting severely energy-constrained wearable s