https://www.selleckchem.com/products/vx-561.html
The intrinsically low spatial resolution of positron emission tomography (PET) leads to image quality degradation and inaccurate image-based quantitation. Recently developed supervised super-resolution (SR) approaches are of great relevance to PET but require paired low- and high-resolution images for training, which are usually unavailable for clinical datasets. In this paper, we present a self-supervised SR (SSSR) technique for PET based on dual generative adversarial networks (GANs), which precludes the need for paired training data,