https://www.selleckchem.com/
Microfluidics-based technologies for single-cell analysis are becoming increasingly important tools in biological studies. With the increasing sophistication of microfluidics, cellular barcoding techniques, and next-generation sequencing, a more detailed picture of cellular subtype is emerging. Unfortunately, the majority of the methods developed for single-cell analysis are high-throughput and not suitable for rare cell analysis as they require a high input cell number. Here, we report a low-cost and reproducible method for rare single-cell analysis using