https://www.selleckchem.com/products/ly364947.html
Among these, we found that the ERF algorithm performed best overall and that its prediction performance was generally better than that of traditional Kriging interpolation. The accuracy of ERF in test area 1 reached 0.87, performing better than RF (0.81), MLP (0.78) and SVM (0.77). The F1-score of ERF for discerning high-risk points in test area 1 was as high as 0.8. The complexity of the distribution of points with different risk levels was a decisive factor in model prediction ability. Identified features in the study area associated