https://www.selleckchem.com/products/fhd-609.html
Development of practical rechargeable Mg batteries (RMBs) is impeded by their limited cycle life and rate performance of cathodes. As demonstrated herein, a copper-porphyrin with meso-functionalized ethynyl groups is capable of reversible two- and four-electron storage at an extremely fast rate (tested up to 53 C). The reversible four-electron redox process with cationic-anionic contributions resulted in a specific discharge capacity of 155 mAh g-1 at the high current density of 1000 mA g-1 . Even at 4000 mA g-1 , it still delivered >