7 week ago - Translate

https://www.selleckchem.com/pr....oducts/CP-690550.htm
This study aimed to predict fat and fatty acids (FA) contents in beef using near-infrared spectroscopy and prediction models based on partial least squares (PLS) and support vector machine regression in radial kernel (R-SVR). Fat and FA were assessed in 200 longissimus thoracis samples, and spectra were collected in reflectance mode from ground meat. The analyses were performed for PLS and R-SVR with and without wavelength selection based on genetic algorithms (GAs). The GA application improved the error prediction by 15% and 68% for