https://www.selleckchem.com/pr....oducts/compstatin.ht
r, had lower average precisions. The LR model without HCUP features had the highest average precision 0.217 (0.136-0.31). To assess the interpretability of the GAM-NNs, we then visualized the learned contributions of the GAM-NNs and compared against the learned contributions of the LRs for the models with HCUP features. Overall, we were able to demonstrate that our proposed generalized additive neural network (GAM-NN) architecture is able to (1) leverage a neural network's ability to learn nonlinear patterns in the data, which is mor