https://www.selleckchem.com/products/GDC-0449.html
Weights were initialized with ImageNet, and Grid Search was used to identify the best hyperparameters using fivefold cross-validation. The best accuracy (87.50%) and Area Under the Curve (AUC) (0.9 was achieved using the DenseNet121 architecture, compared to 72.02% and 0.50 by predicting the majority class ('no skill' model). Finally, we used Gradient-weighted Class Activation Maps (Grad-CAM) to improve visual interpretation of the model and take an explainable artificial intelligence approach (XAI).Revascularization procedures, incl