https://www.selleckchem.com/products/ml-7.html
Emerging in diverse areas of physics, edge states have been exploited as an efficient strategy of manipulating electrons, photons, and phonons for next-generation hybrid electro-optomechanical circuits. Among various edge states, gapless chiral edge states harnessing quantum spin/valley Hall effects in graphene or graphene-like materials are especially unique. Here, we report on an experimental demonstration of chiral edge states in gapped "nanomechanical graphene"-a honeycomb lattice of free-standing silicon nitride nanomechanical membran