3 week ago - Translate

https://www.selleckchem.com/products/amg-232.html
For high-intensity curing, maximum shrinkage rates were 6-61 % higher, whereas times to achieve maximum shrinkage force rate were 15-53 % shorter compared to conventional curing. Composites specifically designed for high-intensity curing showed shrinkage parameters comparable to other investigated composites. Shrinkage behavior under conditions of high-intensity light-curing was material-dependent. Shrinkage force kinetics were more strongly affected by high-intensity curing than absolute values of linear shrinkage and shrinkage force.