5 week ago - Translate

https://www.selleckchem.com/products/AZD0530.html
Electrocardiogram (ECG) signals are time series data that are acquired by time change. A problem with these signals is that comparison data that have the same size as the registration data must be acquired every time. A network model of an auxiliary classifier based generative adversarial neural network that is capable of generating synthetic ECG signals is proposed to resolve the data size inconsistency problem. After constructing comparison data with various combinations of the real and generated synthetic ECG signal cycles, a user re