https://www.selleckchem.com/products/zen-3694.html
The amount of quantum chemistry (QC) data is increasing year by year due to the continuous increase of computational power and development of new algorithms. However, in most cases, our atom-level knowledge of molecular systems has been obtained by manual data analyses based on selected descriptors. In this work, we introduce a data mining framework to accelerate the extraction of insights from QC datasets, which starts with a featurization process that converts atomic features into molecular properties (AtoMF). Then, it employs correl