17 hours ago - Translate

https://www.selleckchem.com/products/lgx818.html
Limited-angle tomography of an interior volume is a challenging, highly ill-posed problem with practical implications in medical and biological imaging, manufacturing, automation, and environmental and food security. Regularizing priors are necessary to reduce artifacts by improving the condition of such problems. Recently, it was shown that one effective way to learn the priors for strongly scattering yet highly structured 3D objects, e.g. layered and Manhattan, is by a static neural network [Goy et al. Proc. Natl. Acad. Sci. 116, 19848