https://www.selleckchem.com/products/og-l002.html
Algorithms to detect changes in cognitive load using non-invasive biosensors (e.g. electroencephalography (EEG)) have the potential to improve human-computer interactions by adapting systems to an individual's current information processing capacity, which may enhance performance and mitigate costly errors. However, for algorithms to provide maximal utility, they must be able to detect load across a variety of tasks and contexts. The current study aimed to build models that capture task-general EEG correlates of cognitive load, which wo