https://www.selleckchem.com/products/roc-325.html
We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities, up to twice nuclear saturation density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon interactions derived within chiral effective field theory. For higher densities, we derive for the first time constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional renormalization group techniques.