https://www.selleckchem.com/
Further investigation using patch clamp whole cell configuration revealed that, at clinically relevant concentrations, methadone decreased the frequency and amplitude of excitatory postsynaptic currents in neurons, indicating a critical role of methadone in weakening synaptic transmission in neural networks in hCOs. In addition, methadone significantly attenuated the voltage-dependent Na+ current in hCOs. We conclude that methadone interrupts neural growth and function in early brain development. Time in range (TIR) is a new metric of glycemic control, asse