https://www.selleckchem.com/products/ABT-869.html
This can aid in disease progression management and deep phenotyping.Learning causal effects from observational data, e.g. estimating the effect of a treatment on survival by data-mining electronic health records (EHRs), can be biased due to unmeasured confounders, mediators, and colliders. When the causal dependencies among features/covariates are expressed in the form of a directed acyclic graph, using do-calculus it is possible to identify one or more adjustment sets for eliminating the bias on a given causal query under certain assum