https://www.selleckchem.com/pr....oducts/ins018-055-is
We found that feasible results were attainable for each image type, and no single image type was superior for all analyses. The MAE (in HU) of the resulting synthesized CT in the whole brain was 51.236 ± 4.504 for CUBE-FLAIR, 45.432 ± 8.517 for T1, 44.558 ± 7.478 for T1-Post, and 45.721 ± 8.7767 for T2, showing not only feasible, but also very compelling results on clinical images. Deep learning-based synthesis of CT images from MRI is possible with a wide range of inputs, suggesting that viable images can be created from