https://www.selleckchem.com/products/Axitinib.html
Through extensive simulation studies, we demonstrate that self-matched learning has comparable performance to other existing methods when there are no unmeasured confounders, but performs markedly better when unobserved time-invariant confounders are present, which is often the case for EHRs. Sensitivity analyses show that the proposed method is robust under different scenarios. Finally, we apply self-matched learning to estimate the optimal ITRs from type 2 diabetes patient EHRs, which shows our estimated decision rules lead to greate