https://www.selleckchem.com/pr....oducts/Sunitinib-Mal
Convolutional neural networks (CNNs) have gained remarkable success on many image classification tasks in recent years. However, the performance of CNNs highly relies upon their architectures. For the most state-of-the-art CNNs, their architectures are often manually designed with expertise in both CNNs and the investigated problems. Therefore, it is difficult for users, who have no extended expertise in CNNs, to design optimal CNN architectures for their own image classification problems of interest. In this article,