https://www.selleckchem.com/
The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.The lack of large-scale real datasets with annotations makes transfer learning a necessity for video