https://www.selleckchem.com/products/upf-1069.html
Complex dynamical systems rely on the correct deployment and operation of numerous components, with state-of-the-art methods relying on learning-enabled components in various stages of modeling, sensing, and control at both offline and online levels. This article addresses the runtime safety monitoring problem of dynamical systems embedded with neural-network components. A runtime safety state estimator in the form of an interval observer is developed to construct the lower bound and upper bound of system state trajectories in runtime.