https://www.selleckchem.com/products/SP600125.html
Our results suggest that these events alter the transient α-synuclein intramolecular contacts, inducing a greater solvent exposure of its hydrophobic, aggregation-prone NAC domain, in full agreement with a recent experimental study on Ca2+ binding. Moreover, metal-binding residues directly participate in the long-range contacts that shield this domain and regulate α-synuclein aggregation. These results provide a molecular-level rationalization of the enhanced fibrillation experimentally observed in the presence of Cu2+ or Ca2+ and the